| 1 | 1 | |||
Niech p>0,q>0 oraz | + | = 1, pokaż że | ||
| p | q |
| 1 | 1 | ||
+ | ≥1 | ||
| p (p − 1) | q (q − 1) |
| 1 | 1 | ||
+ | = 1 | ||
| p | q |
| p | ||
q = | ||
| p−1 |
| 1 | 1 | ||
+ | = | ||
| p(p−1) | q(q−1) |
| 1 | 1 | ||||||||||||||
+ | = | ||||||||||||||
| p(p−1) |
|
| 1 | (p−1)2 | ||
+ | = | ||
| p(p−1) | p |
| 1+(p−1)3 | |
= | |
| p(p−1) |
| p3−3p2+3p | |
= | |
| p(p−1) |
| p2−3p+3 | |
| p−1 |
| p2−3p+3 | ||
f(p) = | ||
| p−1 |
| (2p−3)(p−1)−(p2−3p+3) | ||
f'(p) = | = | |
| (p−1)2 |
| 2p2−5p+3−p2+3p−3 | ||
= | = | |
| (p−1)2 |
| p2−2p | ||
= | ||
| (p−1)2 |
| p2−2p | |
> 0 | |
| (p−1)2 |
| 4−6+3 | 1 | |||
f(p=2) = | = | = 1, zatem | ||
| 2−1 | 1 |
| 1 | 1 | ||
+ | ≥ 1 | ||
| p(p−1) | q(q−1) |