| tg(2x) | ||
limx→π2 | ||
| π2−x |
| sin(2x) | |
= D | |
| (π2−x)cos(2x) |
| sin2(π2−x) | ||
D = | ||
| (π2−x)cos(2x) |
| sin2(π2−x) | 2 | |||
limx→π2 | = limx→π2 | = | ||
| (π2−x)cos(2x) | cos(2x) |
| 2 | ||
= −2 | ||
| −1 |
| 3ctg(3x) | ||
limx→−π2 | ||
| x+π2 |
| 3ctg(3x) | 3cos(3x) | ||
= | |||
| x+π2 | (x+π2)*sin(3x) |
| −3sin3(π2+x) | −9 | |||
limx→−π2 | = limx→−π2 | = | ||
| (x+π2)*sin(3x) | sin(3x) |
| −9 | ||
= | = −9 | |
| sin(3π2) |
| sin(2x) | ||
Damian a skąd wiesz że limx−>0 | = 2 Bo coś takiego zrobiłeś w pierwszej | |
| x |
| sin(kx) | ||
limx→0 | = k, k ∊ R | |
| x |
| sin(kx) | sin(kx) | |||
limx→0 | = lim | *k = 1*k = k | ||
| x | kx |