21x+1−2 | ||
1. limx→oo | ||
arctg(x)−π2 |
ln(snix) | ||
2. limx→π2 | ||
sin(x)−1 |
−1 | 1 | |||
ln(2)* | *21/x + 1*(x2 + 1) → ln( | ) | ||
x2 | 4 |
2u−1 | |
→ ln(2) gdy u→0, więc licznik ~ 2ln2/x gdy x→∞ | |
u |
2ln2/x | ||
1) = limx→∞ | = limx→∞ −2ln2(1+x2)/x2 = −2ln2 z reguły l'Hopitala | |
arctg(x)−π/2 |
ln(u+1) | ||
2) = limu→0 | = 1 | |
u |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |