| ⎧ | 1 = u1−u3 | |
| ⎨ | 3√22 = u1 + u2 + u3 | |
| ⎩ | 2 = u12+u22+u32 |
| 3√2 | 3√2 | 3√2 − 2 | ||||
2) | = 1+u3 + u2 + u3 ⇔ 2u3 + u2 + 1= | ⇔ u2 = −2u3 + | ||||
| 2 | 2 | 2 |
| 3√2 − 2 | ||
(1+u3)2 + (−2u3 + | )2 + u32 = 2 | |
| 2 |
| 3√2 − 2 | 3√2 − 2 | |||
1 + 2u3 + 2u32+ 4u32 + 2* (−2u3) *( | ) + ( | )2 + u32 = 2 | ||
| 2 | 2 |
| 3√2 − 2 | ||
7u32 + 2u3 − 2* (3√2 − 2)* u3 + ( | )2 = 2 | |
| 2 |
| 3√2 − 2 | ||
7u32 + (2 − 6√2 − 4)u3 − ( | )2 − 2 = 0 | |
| 2 |
| 3√2 − 2 | ||
7u32 − (2 + 6√2)u3 − ( | )2 − 2 = 0 | |
| 2 |
| 18− 12√2 | ||
7u32 − (6√2 + 2)u3 − ( | ) = 0 | |
| 4 |
| 9− 6√2 | ||
7u32 − (6√2 + 2)u3 − ( | ) = 0 | |
| 2 |
| 9− 6√2 | ||
Δ = (6√2 + 2)2 + 4*7* ( | ) = 72 + 24√2 + 4 + 14*(9− 6√2) = 72 + 24√2 + 4 | |
| 2 |
https://www.wolframalpha.com/input/?i=7*x%5E2+-+%286sqrt%7B2%7D%2B2%29*x-%28%289-6*sqrt%7B2%7D%29%2F2%29%29%3D0
| 3√2 − 2 | 3√2 − 2 | |||
5/4 = (1+u3)( | − 2u3) +(1+u3)u3 + ( | − 2u3)u3 | ||
| 2 | 2 |
| 3√2 − 2 | 3√2 − 2 | |||
5/4 = u32(−2 + 1 − 2) + u3(2* | − 2 + 1) + | //*4 | ||
| 2 | 2 |
| 4(√2 − 1) ± 4(2 − √2) | ||
u3 = | ||
| 8 |
| √2 − 1 | ||
więc u3 = | ||
| 2 |
| √2 + 1 | ||
więc u1 = | ||
| 2 |
| √2 | ||
więc u2 = | ||
| 2 |
| 3√2 | ||
a + c = | − b | |
| 2 |
| 3√2 + 2 − 2b | 3√2 − 2 − 2b | |||
a = | , c = | |||
| 4 | 4 |
| √2 | √2 + 1 | √2 − 1 | ||||
b = | ⇒ a = | i c = | ||||
| 2 | 2 | 2 |