x7+9x5+2x3+4x2+9 | ||
∫ | ||
x4+9x2 |
1 | 2x | x7+9x5+9 | ||||
4∫ | dx + ∫ | dx + ∫ | dx | |||
x2+9 | x2+9 | x4+9x2 |
1 | x | x7+9x5+9 | ||||
4 * | arctg | + ln(x2+9) + ∫ | dx i nie wiem co z tą ostatnią | |||
3 | 3 | x4+9x2 |
x7 + 9x5 + 9 | ||
A nawet dzielić nie trzeba, wystarczy tylko zauważyć, że | = | |
x4 + 9x2 |
x3(x4 + 9x2) | 9 | 9 | ||||
+ | = x3 + | |||||
x4 + 9x2 | x4 + 9x2 | x4 + 9x2 |
(x7 + 9x5 + 9) | 9 | ||
=x3+ | |||
x4+9x2 | x4+9x2 |
x7+9x5+2x3+3x2+(x2+9) | ||
∫ | dx= | |
x4+9x2 |
x3(x4+9x2)+2x3+3x2+(x2+9) | ||
∫ | dx | |
x4+9x2 |
2x | 3 | 1 | ||||
∫x3dx+∫ | dx+∫ | dx+∫ | dx | |||
x2+9 | x2+9 | x2 |
2x | 1 | 1 | 1 | |||||
∫x3dx+∫ | dx+ | ∫ | dx+∫ | dx | ||||
x2+9 | 3 | (x/3)2+1 | x2 |
1 | x | 1 | ||||
= | x4+ln(x2+9)+arctg( | )− | +C | |||
4 | 3 | x |