ln(n2 + nsin(n2) + 1) | ||
Oblicz limn →∞ | ||
sin(n2) + ln(n+1) |
ln(n2+n*sin(n2)+1) | ||
niech xn = | ||
sin(n2)+ln(n+1) |
ln(n2+n*(−1)+1) | ln(n2−n+1) | |||
an = | = | |||
1+ln(n+1) | ln(n+1)+1 |
ln(n2+n*1+1) | ln(n2+n+1) | |||
bn = | = | |||
−1+ln(n+1) | ln(n+1)−1 |
ln(n2−n+1) | ||
limn→∞ an = limn→∞ | =H | |
ln(n+1)+1 |
| (2n−1)(n+1) | |||||||||
= limn→∞ | = limn→∞ | = 2 | ||||||||
| n2−n+1 |
ln(n2+n+1) | ||
limn→∞ bn = limn→∞ | =H | |
ln(n+1)−1 |
| (2n+1)(n+1) | |||||||||
= limn→∞ | = limn→∞ | = 2 | ||||||||
| n2+n+1 |