| 1 | ||
x= | ||
| 1+t2 |
| 0*(1+t2)−1*2t | ||
dx= | dt | |
| (1+t2)2 |
| 2t | ||
dx=− | dt | |
| (1+t2)2 |
| t | ||
√x(1−x)= | ||
| 1+t2 |
| 6 | t | (−2t) | ||
∫ | dt | |||
| 1+t2 | 1+t2 | (1+t2)2 |
| −12t2 | ||
∫ | dt | |
| (1+t2)4 |
| −12t2 | −12t2−12 | 12 | ||||
∫ | dt=∫ | dt+∫ | dt | |||
| (1+t2)4 | (1+t2)4 | (1+t2)4 |
| −12t2 | dt | dt | ||||
∫ | dt=−12∫ | +12∫ | dt | |||
| (1+t2)4 | (1+t2)3 | (1+t2)3 |
| dt | (1+t2)−t2 | |||
∫ | =∫ | dt | ||
| (1+t2)n | (1+t2)n |
| dt | dt | t | (n−1)(−2t) | ||||
∫ | =∫ | +∫ | dt | ||||
| (1+t2)n | (1+t2)n−1 | 2n−2 | (1+t2)n |
| dt | dt | 1 | t | ||||
∫ | =∫ | + | −U{1}{2n− | ||||
| (1+t2)n | (1+t2)n−1 | 2n−2 | (1+t2)n |
| dt | ||
2}∫ | ||
| (1+t2)n−1 |
| dt | 1 | t | 2n−3 | dt | |||||
∫ | = | + | ∫ | ||||||
| (1+t2)n | 2n−2 | (1+t2)n | 2n−2 | (1+t2)n−1 |
| 1 | t | 5 | dt | dt | |||||
12( | + | ∫ | )−12∫ | ||||||
| 6 | (1+t2)3 | 6 | (1+t2)3 | (1+t2)3 |
| 2t | dt | dt | ||||
= | +10∫ | −12∫ | ||||
| (1+t2)3 | (1+t2)3 | (1+t2)3 |
| 2t | dt | |||
= | −2∫ | |||
| (1+t2)3 | (1+t2)3 |
| 2t | 1 | t | 3 | dt | |||||
= | −2( | + | ∫ | ) | |||||
| (1+t2)3 | 4 | (1+t2)2 | 4 | (1+t2)2 |
| 2t | 1 | t | 3 | dt | |||||
= | − | − | ∫ | ||||||
| (1+t2)3 | 2 | (1+t2)2 | 2 | (1+t2)2 |
| 2t | 1 | t | 3 | 1 | t | 1 | dt | |||||||
= | − | − | ( | + | ∫ | ) | ||||||||
| (1+t2)3 | 2 | (1+t2)2 | 2 | 2 | 1+t2 | 2 | 1+t2 |
| 2t | 1 | t | 3 | t | 3 | dt | ||||||
= | − | − | − | ∫ | ||||||||
| (1+t2)3 | 2 | (1+t2)2 | 4 | 1+t2 | 4 | 1+t2 |
| 1 | ||
x= | ||
| 1+t2 |
| t | ||
√x(1−x)= | ||
| 1+t2 |
| 1 | 3 | 3 | √x−x2 | |||||
2x2√x−x2− | x√x−x2+ | √x−x2+ | arctg( | )+C | ||||
| 2 | 4 | 4 | x |
| 1 | 3 | √x−x2 | ||||
= | (8x2−2x−3)√x−x2− | arctg( | )+C | |||
| 4 | 4 | x |