rachunek różniczkowy
trawa: Iloczyn liczb a i b jest równy 1. Suma kwadratów tych liczb jest najmniejsza dla jakiego a i
jakiego b
4 cze 11:19
ICSP: ab = 1
| 1 | |
a2 + b2 = a2 + |
| ≥ 2√a2 * 1/a2 = 2 |
| a2 | |
| 1 | |
równość zachodzi gdy a2 = |
| czyli a = 1 v a = −1 |
| a2 | |
możliwe pary (a,b) : (1,1) , (−1,−1)
4 cze 11:38
a7:
a*b=1 b=1/a a=1/b
| 1 | | 2a4−1 | |
SK(a)=(a2+b2)=a2+1/a2 (SK)'=2a− |
| = |
| |
| a3 | | a3 | |
| 1 | |
SK'min=3√2/2 dla a= |
| i b= 4√2 |
| 4√2 | |
?
4 cze 11:39
ABC:
a7 źle policzona pochodna
4 cze 11:43
a7: tak, właśnie się zorientowałam, dzięki
4 cze 11:43