4a−2 | ||
Wykaż, że jeżeli log1612=a, to log243= | ||
4a+1 |
log212 | log212 | log2(4*3) | 2+log23 | |||||
log1612= | = | = | = | |||||
log216 | 4 | 4 | 4 |
log23 | log23 | |||
log243= | = | |||
log224 | 3+log23 |
4a−2 |
| |||||||||||
= | = | |||||||||||
4a+1 |
|
2+log23−2 | log23 | |||
= | = | |||
2+log23+1 | 3+log23 |
4a−2 | ||
log243= | ||
4a+1 |
1 | |
log212=a | |
4 |
log23 | log212−log24 | 4a−2 | ||||
log243= | = | = | ||||
log324 | log212+log22 | 4a+1 |