|AB| = |BC| = |AC| = a
|AD| = |BD| = |CD| = 2a
|SK| = h
|DS| = x
|CK| = m
|DK| = 2a−m
| a*√3 | ||
|SC| = | ||
| 2 |
| a | ||
( | )2 + x2 = (2a)2 | |
| 2 |
| √15 | ||
x = | a | |
| 2 |
| a*√3 | ||
h2 + m2 = ( | )2 | |
| 2 |
| 3 | ||
h2 + m2 = | a2 | |
| 4 |
| √15 | ||
h2 + 4a2 − 4a*m + m2 = ( | a)2 | |
| 2 |
| 15 | ||
h2 + m2 + 4a2 − 4a*m = | a2 | |
| 4 |
| 3 | 15 | ||
a2 + 4a2 − 4a*m = | a2 | ||
| 4 | 4 |
| 1 | ||
m = | a | |
| 4 |
| 3 | ||
h2 + m2 = | a2 | |
| 4 |
| 1 | 3 | |||
h2 + ( | a)2 = | a2 | ||
| 4 | 4 |
| 11 | ||
h2 = | a2 | |
| 16 |
| √11 | ||
h = | a | |
| 4 |
| 1 | ||
PABK = | a*h | |
| 2 |
| 1 | √11 | a2 * √11 | ||||
PABK = | a* | a = | ||||
| 2 | 4 | 8 |
Duzy wpływ na sposób rozwiązania mają przyjęte oznaczenia.
| 1 | ||
r − długość promienia okręgu wpisanego w podstawę ostrosłupa, r = | a√3 ⇒ a = 2r√3 | |
| 6 |
| a2 | ||
r2 = | , α∊(0o, 90o), | |
| 12 |
| 2r | 1 | √11 | ||||
cosα = | = | , sinα = | ||||
| 4r√3 | 2√3 | 2√3 |
| √11 | √3*√11 | |||
w = 3r*sinα = 3r* | = r* | |||
| 2√3 | 2 |
| √3*√11 | 3 | 3 | a2 | |||||
P = r√3*w = r√3*r* | = | r2√11 = | * | √11 = | ||||
| 2 | 2 | 2 | 12 |
| a2√11 | ||
= | ||
| 8 |
dla Bogdana