| π | ||
Mam udowodnić, że cos(z) = 0 wtw gdy z = | + 2kπ, gdzie k ∊ Z. | |
| 2 |
| eiz + e−iz | exi − y + e−xi + y | |||
cos(z) = | = | = ... = | ||
| 2 | 2 |
| cos(x)(e−y + ey) | sin(x)(e−y − ey) | |||
= | + i | = 0 a z tego wiem, że | ||
| 2 | 2 |
| cos(x)(e−y + ey) | sin(x)(e−y − ey) | ||
= 0 oraz | = 0 | ||
| 2 | 2 |
| π | ||
z pierwszego musi być cos(x) = 0 czyli x = | + kπ, k∊Z | |
| 2 |
| π | ||
co ostatecznie daje mi z = | + kπ, k∊Z. | |
| 2 |