| 1 | ||
Ciąg (a,b,c) jest geometryczny, a ciągi (a+1,b−3, | c+7) i (3a−1, 2b−2, c−3) są | |
| 3 |
| 1 | ||
1) (a+1,b−3, | c+7) | |
| 3 |
| 1 | ||
2b−6=a+1+ | c+7 | |
| 3 |
| 1 | ||
2b=a+ | c+14 | |
| 3 |
| 3a−1+c+3 | ||
2b−2= | ||
| 2 |
| 1 | 3a+c−4 | |||
a+ | c+14−2= | /*2 | ||
| 3 | 2 |
| 2 | ||
2a+ | c+24=3a+c−4 | |
| 3 |
| 2 | |
c+28=a | |
| 3 |
| 1 | 2 | |||
( | c+21)2=( | c+28)c | ||
| 2 | 3 |
| 1 | |
c2+21c+441=U{2}[3}c2+28c | |
| 4 |
| 3 | 8 | ||
c2− | c2−7c+441=0 | ||
| 12 | 12 |
| 5 | ||
− | c2−7c+441=0 | |
| 12 |
| −10 | 12 | 126 | ||||
c1=U{7−28}{ | =−21* | = | ||||
| 12 | −10 | 5 |
| 224 | 168 | 126 | ||||
( | , | , | )− geometryczny | |||
| 5 | 5 | 5 |
| 229 | 153 | 77 | ||||
( | , | , | )− arytmetyczny | |||
| 5 | 5 | 5 |
| 667 | 326 | 111 | ||||
( | , | , | )−−−− tu nie pasuje | |||
| 5 | 5 | 5 |
| 3a − 1 + c −3 | ||
2b − 2 = | ||
| 2 |
| 2 | ||
2a + | c + 24 = 3a + c − 4 | |
| 3 |
| 1 | ||
− | + 28 = a | |
| 3 |
| 1 | ||
tam przy − | c | |
| 3 |
| 1 | 1 | |||
2b=− | c+28+ | c+14 | ||
| 3 | 3 |
| 1 | ||
441=(− | c+28)*c | |
| 3 |
?)
(22,18,14)− arytm.
(62,40,18)−arytm.
2) c=63
(7,21,63)−geom
(8,18,28) − arytm.
(20,40,60)− arytm.
Rozumiem, że c=21 odrzucam, bo ciąg stały nie jest ciągiem geometrycznym?