a2+b2 | ||
Niech a,b nieujemne. Wykaż że a+b ≥ ( | )1/2+ √ab | |
2 |
a2 + a2x4 | ||
a + ax2 ≥ ( | )1/2 + √a2x2 | |
2 |
1 + x4 | ||
a(1+x2) ≥ a( | )1/2 + ax | |
2 |
1 + x4 | ||
1+x2 ≥ ( | )1/2 + x | |
2 |
1 + x4 | ||
x2 − x + 1 ≥ ( | )1/2 (obie strony dodatnie) | |
2 |
1 + x4 | ||
(x2 − x + 1)2 ≥ | ||
2 |
1 + x4 | ||
x4 − 2(x − 1) + (x−1)2 ≥ | ||
2 |
a2+b2 | ||
√ | ≥ √ab , a2 + b2 ≥ 2ab , (a−b)2 ≥ 0 | |
2 |
a2+b2 | ||
a+b≥ √ | , 2(a+b)2 ≥ a2 + b2 , a2+4ab+b2 ≥ 0 | |
2 |