s+1 | ||
Dla F(s)= | ||
s(s2+3s+4) |
s+1 | A1 | |||
Δ jest ujemna czyli będzie po prostu:F(s)= | = | ? | ||
s(s2+3s+4) | s |
A1 | B1(s−p)+B2√q | ||
+ | |||
s | (s−p)2+q |
3 | 7 | |||
no to będzie p= − | , q= | czyli F(s)= | ||
2 | 4 |
A1 |
| |||||||||||||||||
+ | = | |||||||||||||||||
s |
|
A1 | B1 | B2 | |||||||||||||||||||||||||||
+ | + | ? | |||||||||||||||||||||||||||
s |
|
|
1 | s+1 | |||
U{1]{4}( | − | ) | ||
s | s2+3s+4 |
s+1 | s+3/2 | √7/2 | |||
= | −U{1}{√7* | ||||
s2+3s+4 | (s+3/2)2+7/4 | (s+3/2)2+7/4 |
1 | 1 | 1 | |||
− | ( cos t √7/2 − | sin t √7/2) e−3t/2 | |||
4 | 4 | √7 |
1 | 1 | |||
Na początku | (...), w drugiej linii | * ... | ||
4 | √7 |
1 | 1 | |||
A skąd się wzięły ułamki: | i | |||
4 | √7 |
s+1 | 1 | 1 | s−1 | ||||
= | ( | − | ) | ||||
s(s2+3s+4) | 4 | s | s2+3s+4 |
1 | |
= L(1) | |
s |
s−1 | s+3/2 | 5 | √7/2 | ||||
= | − | * | |||||
s2+3s+4 | (s+3/2)2 + 7/4 | √7 | (s+3/2)2 + 7/4 |