| 2 | ||
1+ | =t2 | |
| x |
| 2 | |
=t2−1 | |
| x |
| 1 | t2−1 | ||
= | |||
| x | 2 |
| 2 | ||
x= | ||
| t2−1 |
| 0*(t2−1)−2*2t | ||
dx= | dt | |
| (t2−1)2 |
| 4t | ||
dx=− | dt | |
| (t2−1)2 |
| 4t2 | ||
∫− | dt | |
| (t2−1)2 |
| (t+1)2+(t−1)2+(t+1)2(t−1)−(t+1)(t−1)2 | ||
−∫ | dt | |
| (t−1)2(t+1)2 |
| 1 | 1 | 1 | 1 | |||||
−(∫ | dt+∫ | dt+∫ | dt−∫ | dt) | ||||
| (t−1)2 | (t+1)2 | t−1 | t+1 |
| 1 | 1 | t+1 | ||||
= | + | +ln| | |+C | |||
| t−1 | t+1 | t−1 |
| t+1+t−1 | t2−1+2t+2 | |||
= | +ln| | |+C | ||
| t2−1 | t2−1 |
| 2t | t2−1+2t+2 | |||
= | +ln| | |+C | ||
| t2−1 | t2−1 |
| 2 | ||
t2=1+ | ||
| x |
| 2 | ||
x= | ||
| t2−1 |
| 2 | 2t | dt | 2t | 1 | t−1 | |||||||
całka= ∫t( | )' dt = | − ∫ | = | − | ln| | | | ||||||
| t2−1 | t2−1 | t2−1 | t2−1 | 2 | t+1 |