trygonometria
f123:
Udowodnij, ze jesli α + β + γ = π, to:
sin2α + sin2β + sin2γ = 4sinαsinβsinγ
6 maj 12:02
wredulus_pospolitus:
y = π − (α+β)
podstawiasz i przekształcasz
6 maj 12:11
Jiraya:
L = sin2α + sin2β + sin2γ =
= 2sin(α+β)cos(α−β) + 2sinγcosγ =
= 2sin(π−γ)cos(α−β) + 2sinγcosγ =
= 2sin(γ)cos(α−β) + 2sinγcosγ =
= 2sin(γ)(cos(α−β) + cosγ) =
| α−β+γ | | α−β−γ | |
= 2sin(γ)•2cos( |
| )cos( |
| ) = |
| 2 | | 2 | |
| α−β+π−α−β | | α−β−π+α+β | |
= 4sin(γ)•cos( |
| )cos( |
| ) = |
| 2 | | 2 | |
| π | | π | |
= 4sin(γ)cos( |
| −β)cos(α− |
| )= |
| 2 | | 2 | |
= 4sinαsinβsinγ = P
6 maj 12:12
f123: robilem juz tak 3x razy, nawet nie zblizalem sie do prawej strony
6 maj 12:12