!
SC = 4
SB = 8
trapez jest opisany na okręgu ⇒ AB+CD = AD+BC
2α+2β+90+90=360
2(α+β)=180
α+β=90
β=90−α
| SP | r | |||
sinα= | = | |||
| SB | 8 |
| RS | r | |||
sinβ= | = | |||
| SC | 4 |
| 1 | ||
sinα= | ||
| √5 |
| 2 | ||
cosα= | ||
| √5 |
| r | 2 | ||
= | |||
| 4 | √5 |
| 8 | 8√5 | |||
r= | = | |||
| √5 | 5 |
| 16 | 16√5 | |||
|AD|=2r = | = | |||
| √5 | 5 |
| PB | ||
cosα= | ||
| SB |
| 2 | 16 | 16√5 | ||||
PB = SB*cosα=8* | = | = | ||||
| √5 | √5 | 5 |
| 24√5 | ||
AB=AP+PB = r+PB = | ||
| 5 |
| 16√5 | ||
BM=BP= | ||
| 5 |
| CM | ||
cosβ= | ||
| SC |
| 1 | CM | ||
= | |||
| √5 | 4 |
| 4 | 4√5 | |||
CM = | = | |||
| √5 | 5 |
| 20√5 | ||
[N[BC=BM+MC= | ||
| 5 |
| 4√5 | ||
RC=MC= | ||
| 5 |
| 12√5 | ||
CD=RD+RC=r+RC= | ||
| 5 |
Proponuję takie rozwiązanie:
x + y = √42 + 82 = √80 = 4√5
| (x + y)*r | 4*8 | 4*8 | 8 | ||||
= | ⇒ r = | = | |||||
| 2 | 2 | 4√5 | √5 |
| 1 | 1 | 64 | 8 | |||||
P = 2r2+2* | *r*x+2* | *r*y = 2r2 + r(x + y) = 2* | + | *4√5 = ... | ||||
| 2 | 2 | 5 | √5 |