b | b | b2 | ||||
y = ax2 + bx +c = a(x2 + | x) +c =a[ (x+ | )2 − | ] + c = | |||
a | 2a | 4a2 |
b | b2 | b | b2 | b | ||||||
a(x+ | )2 − a* | +c = a(x+ | )2 − | + c = a(x+ | )2 − | |||||
2a | 4a2 | 2a | 4a | 2a |
b2 | b2 | 4ac | b | b2−4ac | ||||||
( | ) − ( | − | ) = a(x+ | )2 − | ||||||
4a | 4a | 4a | 2a | 4a |
b | ||
więc p = − | ||
2a |
b2−4ac | −Δ | |||
q = − | = | |||
4a | 4a |