x8−x5+x2−x+1 =
| 1 | 1 | 3 | ||||
(x4)2 − 2• | •x4•x + | •x2 + | x2 − x + 1= | |||
| 2 | 4 | 4 |
| 1 | 1 | |||
[x4 − | x]2 + | (3x2−4x+4)= | ||
| 2 | 4 |
| 1 | 1 | |||
[x4− | x]2+ | [(x−2)2+2x2] > 0 | ||
| 2 | 4 |
| 3 | ||
x2 − x + 1 ≥ | ||
| 4 |
| x | x | x2 | ||||
x8−x5+x2−x+1=(x4− | )2+( | −1)2+ | >0 | |||
| 2 | 2 | 2 |