w trapezie abcd o podstawach ab i cd poprowadzono odcinek pq o dlugosci √ab rownolegy do
podstaw trapezu.
Uzasadnij że
A) lAPl/lPDl = AB/PQ
B) trapezy ABQP i PCQD są podobne
Nie mam kompletnie pojęcia jak się zabrać do tego
Czy I PQ i = √ I AB I ?
czy raczej I AB I = a i I CD I = b i I PQ I = √a*b ?
a)
Z. PQ||AB, |PQ|=√a*b
| lAPl | AB | |||
T. | = | |||
| lPDl | PQ |
| a | |AB| | e | √ab | ||||
= | = | = | |||||
| e | |PQ| | b | b |
| |FC| | |CE| | ||
= | , |FC|=|PD|, |CE|=|AP|+|PD| | ||
| e−b | a−b |
| PD | |AP|+|PD| | ||
= | ⇔ | ||
| e−b | a−b |
| |PD| | e−b | |AP|+|PD| | a−b | ||||
= | ⇔ | = | |||||
| |AP|+|PD| | a−b | |PD| | e−b |
| |AP| | a−b | |AP| | a−b | ||||
+1= | ⇔ | = | −1 po przekształceniu | ||||
| |PD| | √ab−b | |PD| | √ab−b |
| |AP| | √ab | ||
= | ⇔ | ||
| |PD| | b |
| |AP| | |AB| | ||
= | |||
| |PD| | |PQ| |
?
Mamy równość miar kątów w tych trapezach
| a | x | |||
i x=√ab 2 ⇒ x2=ab ⇒ | = | |||
| x | a |
| |AP| | |AB| | |||
to: | = | |||
| |PD| | |PQ| |