Dowody
Kinga: Kąt β jest ostry. Uzasadnij, że gdy
a) cosβ=0,6, to 45°<β<60°
b) cosβ=0,9, to β<30°
c) sinβ=0,8, to 45°<β<60°
25 kwi 15:40
PW: Wskazówka
cos(x) jest funkcją
malejącą na rozpatrywanym przedziale (tzn. dla kątów ostrych).
| 1 | |
cos45° = |
| ≈0,7, cos60°=0,5. Gdzie więc jest położony cosβ, a gdzie β? |
| √2 | |
25 kwi 15:53
Kinga: cos60°<cosβ<cos45°
60°>β>45°
O to chodzi?
25 kwi 16:18
PW: Brawo.
25 kwi 16:25
Kinga: A czy przy pisaniu dowodu trzeba zapisać że im mniejsza wartość cosinusa tym większy kąt?
25 kwi 16:27
Jerzy:
Trzeba napisać,że w przypadku funkcji malejącej ,większemu argumentowi odpowiada mniejsza
wartość funkcji.
25 kwi 16:30
:): i trzeba napisać kiedy ta funkcja jest malejąca
25 kwi 16:40
Jerzy:
β jest kątem ostrym,a w przedziale (0,π/2) cosinus jest funkcją malejącą.
25 kwi 16:54
:): bdb, siadaj 3=
25 kwi 19:02