Bogdan:
Szkic:
Założenia: |BM| = |MA| = |AK| = |KC| = |CL| = |LB| = a = r
√3,
|KS| = |LS| = |NS| = |MS| = r, |LF| = |FN| = b, |NE| = |EM| = c,
|BF| = a − b, |BE| = a − c,
|∡MSA| = |∡KSA| = |∡KSC| = |∡LSC| = 60
o, |∡LSF| = |∡NSF| = α, |∡NSE| = |∡MSE| = β
| a − c | | a − b | |
Teza: |
| + |
| = 1 |
| a + c | | a + b | |
Dowód: 2α + 2β = 120
o ⇒ α + β = 60
o ⇒ β = 60
o − α
| tg60o − tgα | | √3 − tgα | |
tgβ = tg(60o − α) = |
| = |
| |
| 1 + tg60o*tgα | | 1 + √3*tgα | |
ΔSLF: b = r*tgα, ΔSME: c = r*tgβ
a−c | | a−b | | r√3 − r*tgβ | | r√3 − r*tgα | |
| + |
| = |
| + |
| = |
a+c | | a+b | | r√3 + r*tgβ | | r√3 + r*tga | |
| √3 − tgβ | | √3 − tgα | |
= |
| + |
| = ... (dalej samodzielnie) .. = 1 |
| √3 + tgβ | | √3 + tgα | |