| 2−x | ||
Wolframy i inne dają jakiś dziwny wynik, wg. odpowiedzi powinno wyjść −arcsin( | ) | |
| √5x |
| dx | ||
∫ | ||
| x * √x2 + x − 1 |
| t2+1 | ||
x= | ||
| 2t+1 |
| 2t2+t−t2−1 | ||
t−x= | ||
| 2t+1 |
| t2+t−1 | ||
t−x= | ||
| 2t+1 |
| 2t(2t+1)−2(t2+1) | ||
dx= | dt | |
| (2t+1)2 |
| 2t2+2t−2 | ||
dx= | dt | |
| (2t+1)2 |
| 2t+1 | 2t+1 | 2(t2+t−1) | ||
∫ | dt | |||
| t2+1 | t2+t−1 | (2t+1)2 |
| dt | ||
2∫ | ||
| t2+1 |
| 1 | ||
t= | ||
| x |
| dx | ||
∫ | ||
| x2√1+1x+1x2 |
| 1 | ||
t= | ||
| x |
| dt | dt | ||||||||||||||||||
−∫ | =−∫ | ||||||||||||||||||
| √1−t−t2 |
|
| dt | 2 | dt | ||||
−∫ | =− | ∫ | } | |||
| √1−t−t2 | √5 | √1−(2t+1√5)2 |
| dt | 2t+1 | |||
−∫ | =−arcsin( | )+C | ||
| √1−t−t2 | √5 |