| xdy | 1 | ||
− | = x3 | ||
| y4dx | y3 |
| dz | dy | dy | dz | |||||
z = y−3, | =−3y−4 | ⇒ | = − | |||||
| dx | dx | y4dx | 3dx |
| xdz | ||
czyli mam − | − z = x | |
| 3dx |
| xdz | ||
i dalej rozwiązuję − | = z | |
| 3dx |
| dz | dx | |||
−∫ | = ∫ | + C | ||
| 3z | x |
| 1 | ||
− | ln|z| = ln|x| + C | |
| 3 |
y = Cx
co dalej
| C(x) | ||
z = | ||
| x3 |
| dz | −3C | −3 | dy | Cy | ||||
= | = | ⇒ y' = | 4 ? | |||||
| dx | x4 | y4 | dx | x |
| y | ||
y' = C ( | )4 | |
| x |
| −1 | ||
e(1−4)∫ | dxy−4 | |
| x |
| x2 | |
(xy' − y = y4x3) | |
| y4 |
| x3 | x2 | |||
( | y'− | )=x5 | ||
| y4 | y3 |
| x3 | x2 | |||
(−3 | y'+3 | )=−3x5 | ||
| y4 | y3 |
| x3 | ||
( | )'=−3x5 | |
| y3 |
| x3 | x6+C | ||
=− | |||
| y3 | 2 |
| 1 | x6+C | ||
=− | |||
| y3 | 2x3 |
| 2x3 | ||
y3=− | ||
| x6+C |
| δφ(x)ψ(y)P(x,y) | δφ(x)ψ(y)Q(x,y) | ||
= | |||
| δy | δx |
| dψ | δP(x,y) | dφ | δQ(x,y) | |||||
φ(x) | P(x,y)+φ(x)ψ(y) | =ψ(y) | Q(x,y)+φ(x)ψ(y) | |||||
| dy | δy | dx | δx |
| δP(x,y) | δQ(x,y) | dφ | dψ | |||||
φ(x)ψ(y) | −φ(x)ψ(y) | =ψ(y) | Q(x,y)−φ(x) | P(x,y) | ||||
| δy | δx | dx | dy |
| δP(x,y) | δQ(x,y) | dφ | dψ | |||||
φ(x)ψ(y)( | − | )=ψ(y) | Q(x,y)−φ(x) | P(x,y) | ||||
| δy | δx | dx | dy |
| δP(x,y) | δQ(x,y) | 1 | dφ | 1 | dψ | ||||
− | = | Q(x,y)− | P(x,y) | ||||||
| δy | δx | φ(x) | dx | ψ(y) | dy |
| 1 | dφ | |
=f(x) | ||
| φ(x) | dx |
| 1 | dψ | |
=g(y) | ||
| ψ(y) | dy |
| dφ | |
=f(x)dx | |
| φ |
| dψ | |
=g(y)dy | |
| ψ |
| δP(x,y) | δQ(x,y) | 1 | dφ | 1 | dψ | ||||
− | = | Q(x,y)− | P(x,y) | ||||||
| δy | δx | φ(x) | dx | ψ(y) | dy |
| δP(x,y) | δQ(x,y) | ||
− | =Q(x,y)f(x)−P(x,y)g(y) | ||
| δy | δx |
| dy | |
+py−qyr=0 | |
| dx |
| δP | δQ | ||
− | =p−rqyr−1 | ||
| δy | δx |
| B | ||
p−rqyr−1=Ap−(py−qyr) | ||
| y |
| dφ | |
=f(x)dx | |
| φ |
| dψ | |
=g(y)dy | |
| dψ |
| dφ | |
=(1−r)pdx | |
| φ |
| dψ | −r | ||
= | dy | ||
| ψ | y |
| 1 | ||
y' − | y = y4x2 | |
| x |
| 1 | ||
i aby otrzymać równanie y' − | y = y4x2 | |
| x |
| x2 | ||
μ(x,y)= | ||
| y4 |
ale w BOMie inaczej to wyjasniają
| v' | 1 | ||
= | |||
| v | x |
| dv | dx | ||
= | |||
| v | x |
| u' | |
=x5 | |
| u4 |
| −3du | |
=−3x5 | |
| u4 |
| 1 | x6 | C | |||
=− | − | ||||
| u3 | 2 | 2 |
| 1 | x6+C | ||
=− | |||
| u3 | 2 |
| 2 | ||
u3=− | ||
| x6+C |
| 2v3 | ||
u3v3=− | ||
| x6+C |
| 2x3 | ||
y3=− | ||
| x6+C |
| 3√2 | ||
u = − | ||
| x2 + C' |
| 3√2Cx | ||
więc y = − | ||
| x2 + C' |
| 1 | x6+C | |||
Ola tyle że z całkowania otrzymaliśmy | =− | |||
| u3 | 2 |
| 2 | ||
co po odwróceniu ułamka daje u3=− | ||
| x6+C |
| 2 | ||
czyli u = −( | )1/3 | |
| x6 + C |
| x3√2 | ||
to w takim razie skoro y = uv = − | ||
| x2 + C |