| n2−1 | ||
6*∑n=1∞ | ||
| 7n |
Tam jest od n=0
| x | ||
∑n=1∞xn= | ||
| 1−x |
| d | d | x | |||
(∑n=1∞xn)= | ( | ) | |||
| dx | dx | 1−x |
| 1 | ||
∑n=1∞nxn−1= | ||
| (1−x)2 |
| x | ||
∑n=1∞nxn= | ||
| (1−x)2 |
| d | d | x | |||
(∑n=1∞nxn)= | ( | ) | |||
| dx | dx | (1−x)2 |
| (1−x)2+2x(1−x) | ||
∑n=1∞n2xn−1= | ||
| (1−x)4 |
| x+1 | ||
∑n=1∞n2xn−1= | ||
| (1−x)3 |
| x2+x | ||
∑n=1∞n2xn= | ||
| (1−x)3 |
| x2+x | x | |||
∑n=1∞(n2−1)xn= | − | |||
| (1−x)3 | 1−x |
| (x2+x)−x(1−2x+x2) | ||
∑n=1∞(n2−1)xn= | ||
| (1−x)3 |
| −x3+3x2 | ||
∑n=1∞(n2−1)xn= | ||
| (1−x)3 |
| ||||||||||||||||
|
| |||||||
|
| 5 | ||
= | ||
| 54 |
| 5 | 49 | |||
6*(−1+ | )=− | |||
| 54 | 9 |