| dy | y | y | |||
= | * ln( | ) | |||
| dx | x | x |
| y | ||
podstawiam u = | ||
| x |
| y | y | y | ||||
ostatecznie dochodze do −ln( | − | *ln( | )) = ln(x) + C | |||
| x | x | x |
| dy | du | ||
= u + x * | |||
| dx | dx |
| dy | y | y | |||
= | * ln( | ) | |||
| dx | x | x |
| y | ||
Niech u = | ||
| x |
| du | |
* x + u = u * ln(u) | |
| dx |
| du | |
* x = u * ln(u) − u /*dx | |
| dx |
| dx | ||
du = [u * ln(u) − u] | /*[u * ln(u) − u] | |
| x |
| dx | ||
[u * ln(u) − u] du = | / ∫ | |
| x |
| dx | ||
∫[u * ln(u) − u] du = ∫ | ||
| x |
| 1 | 1 | 1 | 1 | |||||
= | u2 * ln(u) − | ∫ u du = | u2*ln(u) − | u2 +C | ||||
| 2 | 2 | 2 | 4 |
| 1 | ||
oraz ∫ u du = | u2 + C | |
| 2 |
| 1 | 1 | 1 | |||
u2*ln(u) − | u2 − | u2 = ln|x| + C | |||
| 2 | 4 | 2 |
| 1 | 3 | ||
u2*ln(u) − | u2 = ln|x| + C | ||
| 2 | 4 |
| y | 1 | y | 3 | |||||
( | )2 [ | ln( | )− | ]= ln|x| + C | ||||
| x | 2 | x | 4 |