dy | y | y | |||
= | * ln( | ) | |||
dx | x | x |
y | ||
podstawiam u = | ||
x |
y | y | y | ||||
ostatecznie dochodze do −ln( | − | *ln( | )) = ln(x) + C | |||
x | x | x |
dy | du | ||
= u + x * | |||
dx | dx |
dy | y | y | |||
= | * ln( | ) | |||
dx | x | x |
y | ||
Niech u = | ||
x |
du | |
* x + u = u * ln(u) | |
dx |
du | |
* x = u * ln(u) − u /*dx | |
dx |
dx | ||
du = [u * ln(u) − u] | /*[u * ln(u) − u] | |
x |
dx | ||
[u * ln(u) − u] du = | / ∫ | |
x |
dx | ||
∫[u * ln(u) − u] du = ∫ | ||
x |
1 | 1 | 1 | 1 | |||||
= | u2 * ln(u) − | ∫ u du = | u2*ln(u) − | u2 +C | ||||
2 | 2 | 2 | 4 |
1 | ||
oraz ∫ u du = | u2 + C | |
2 |
1 | 1 | 1 | |||
u2*ln(u) − | u2 − | u2 = ln|x| + C | |||
2 | 4 | 2 |
1 | 3 | ||
u2*ln(u) − | u2 = ln|x| + C | ||
2 | 4 |
y | 1 | y | 3 | |||||
( | )2 [ | ln( | )− | ]= ln|x| + C | ||||
x | 2 | x | 4 |