matematykaszkolna.pl
kombinatoryka salamandra: Zadanie Rozważamy wszystkie liczby naturalne 5−cyfrowe przy użyciu cyfr 1,3,5,7,9 bez powtarzania jakiejkolwiek cyfry. Oblicz sumę wszystkich takich liczb. Jedyne co ruszyłem to ile ich jest: 5!=120
10 mar 14:45
jc: dodajesz liczby postaci: a + 10b +100c + 1000d + 10000e Ile raz a będzie równe 1? a ile 2? Ile jest równa suma wszystkich jedności? A dziesiątek?
10 mar 14:49
salamandra: https://matematykaszkolna.pl/strona/5245.html stąd to nic nie rozumiem szczerze mówiąc
10 mar 15:01
10 mar 15:16
jc: Rozwiąż zadanie dla 3 cyfr, np. dla 2, 5, 7 257 = 200 + 50 + 7 275 = 200 + 70 + 5 527 = ... dopisz sa 572 725 752 Jakie liczby jednocyfrowe zobaczysz po prawej stronie? Każda pojawi się dwukrotnie. Suma = 2(2+5+7)=28 A dwucyfrowe? Suma będzie 10 razy większa. Suma 3 cyfrowych będzie 100 razy większa. Razem będziesz miał 111*28.
10 mar 15:19
salamandra: teraz jaśniej, dzięki
10 mar 15:27