| n(√n+2 − √n+1) | ||
lim(n→∞) | ||
| √n+1 |
| √a − √b | √a − √b | √a + √b | a − b | ||||
= | * | = | |||||
| . | . | √a + √b | √a + √b |
| n(√n+2−√n+2 | n(√n+2+√n+2 | |||
= | * | = | ||
| √n+1 | n(√n+2+√n+2 |
| n2(√n+2 + √n+1)2 | ||
= | ||
| ..... |
| na | a | |||
n wyciągasz przed ułamek ( | = n* | ) | ||
| b | b |
tylko sumę pierwiastków
masz
| n | √n+2 − √n+1 | ||
* | = .... | ||
| √n+1 | 1 |
(√a − √b)(√a + √b) ≠ (√a + √b)(√a + √b) = (√a + √b)2
| n(√n+2 − √n+1) | √n+2 + √n+1 | |||
= | * | = | ||
| √n+1 | √n+2 + √n+1 |
| n(√n+2 − √n+1)2 | ||
= | = | |
| (√n+1)(√n+2) + n + 1 |
| n(n+2−n−1) | 1 | |||
= | = 0 | |||
| n[(√n+1)(√n+2)+1n] | ∞ |
(chodzi o licznik)
(√a − √b)*(p(a} + √b) = (√a − √b)*(√a + √b) a nie (√a − √b)2
trzecia linijak −−− −BZDUUUURA
(tym razem chodzi o mianownik)