| dP | dQ | |||
I mam problem co dalej. Warunek | = | mi się nie zgadza, a nie wiem jak znaleźć | ||
| dy | dx |
| δP | |
=4xy−1 | |
| δy |
| δQ | |
=1 | |
| δx |
| δμP | δμQ | ||
= | |||
| δy | δx |
| δφ(x)ψ(y)P(x,y) | δφ(x)ψ(y)Q(x,y) | ||
= | |||
| δy | δx |
| dψ | δP | dφ | δQ | |||||
φ(x)( | P(x,y)+ψ(y) | )=ψ(y)( | Q(x,y)+φ(x) | ) | ||||
| dy | δy | dx | δx |
| dψ | δP | dφ | δQ | |||||
φ(x) | P(x,y)+φ(x)ψ(y) | =ψ(y) | Q(x,y)+ψ(y)φ(x) | |||||
| dy | δy | dx | δx |
| δP | δQ | dφ | dψ | |||||
φ(x)ψ(y) | −ψ(y)φ(x) | =ψ(y) | Q(x,y)−φ(x) | P(x,y) | ||||
| δy | δx | dx | dy |
| δP | δQ | 1 | dφ | 1 | dψ | ||||
− | = | Q(x,y)− | P(x,y) | ||||||
| δy | δx | φ(x) | dx | ψ(y) | dy |
| 1 | dφ | |
=f(x) | ||
| φ(x) | dx |
| 1 | dψ | |
=g(y) | ||
| ψ(y) | dy |
| dφ | |
=f(x)dx | |
| φ |
| dψ | |
=g(y)dy | |
| ψ |
| δP | δQ | ||
− | =Q(x,y)f(x)−P(x,y)g(y) | ||
| δy | δx |
| δP | |
=4xy−1 | |
| δy |
| δQ | |
=1 | |
| δx |
| B | ||
4xy−2=(x+y+y2)A−y(2xy−1) | ||
| y |
| dψ | 2 | ||
=− | dy | ||
| ψ | y |
| 1 | ||
ψ(y)= | ||
| y2 |
| 1 | ||
μ(x,y)=ψ(y)= | ||
| y2 |
| 1 | x | 1 | ||||
(2x− | )dx+( | + | +1)dy=0 | |||
| y | y2 | y |
| δP | 1 | ||
= | |||
| δy | y2 |
| δQ | 1 | ||
= | |||
| δx | y2 |
| δF | 1 | ||
=2x− | |||
| δx | y |
| x | ||
F(x,y)=x2− | +f(y) | |
| y |
| δF | x | 1 | |||
= | + | +1 | |||
| δy | y2 | y |
| x | x | 1 | |||
+f'(y)= | + | +1 | |||
| y2 | y2 | y |
| 1 | ||
f'(y)= | +1 | |
| y |
| x | ||
F(x,y)=x2− | +ln(y)+y | |
| y |
| x | ||
x2− | +ln(y)+y=C | |
| y |
| u+1 | ||
x= | ||
| 2y |
| 2yu'−2(u+1) | ||
x'= | ||
| 4y2 |
| yu'−u−1 | ||
x'= | ||
| 2y2 |
| yu'−u−1 | u+1 | |||
yu | + | +y+y2=0 | ||
| 2y2 | 2y |
| yu'−u−1 | u+1 | |||
u | + | +y+y2=0 | ||
| 2y | 2y |
| yuu'−u2−u | u+1 | 2y(y+y2) | |||
+ | + | =0 | |||
| 2y | 2y | 2y |
| u | 1+2y2+2y3 | 1 | |||
u'− | + | ||||
| y | y | u |
| u | 1+2y2+2y3 | 1 | |||
u'− | =− | ||||
| y | y | u |
| u2 | 1+2y2+2y3 | |||
2uu'−2 | =−2 | |||
| y | y |
| 2v | 1+2y2+2y3 | |||
v'− | =−2 | |||
| y | y |
| 2v | ||
v'− | =0 | |
| y |
| 2v | ||
v'= | ||
| y |
| v' | 2 | ||
= | |||
| v | y |
| 1+2y2+2y3 | ||
C'(y)y2+2yC(y)−2yC(y)=−2 | ||
| y |
| 1+2y2+2y3 | ||
C'(y)y2=−2 | ||
| y |
| 1+2y2+2y3 | ||
C'(y)=−2 | ||
| y3 |
| 1 | ||
C(y)=−2(− | +2y+2ln|y|) | |
| 2y2 |
| 1 | ||
C(y)=( | −4y−4ln|y|) | |
| y2 |
| 1−4y3 | ||
C(y)=( | −4ln|y|)+C1 | |
| y2 |