n * (1 + n) | ||
an = n + (n + 1) + (n + 2) + (n + 3) + ... + (n + n) = n * (n + 1) + | = | |
2 |
3n2 + 3n | ||
1,5*(n2+n) = | ||
2 |
3n2 + 3n | 2 | ||
> 1890 / * | |||
2 | 3 |
−1 − 71 | ||
n1 = | = −36 < 0 ∉ ℕ+ | |
2 |
−1 + 71 | ||
n2 = | = 35 ∊ ℕ+ ⇒ n > 35 | |
2 |
3 * 362 + 3 * 36 | ||
n36 = | = 1998 | |
2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |