| sinx | ||
Czy całkę ∫ | da się obliczyć bez podstawienia uniwersalnego? | |
| sinx+cosx |
| √2 | ||
2) sinx = sin(x−π/4 + π/4) = | (sin(x−π/4) + cos(x−π/4)) | |
| 2 |
| sinx | 1 | sin(x−π/4) + cos(x−π/4) | ||||
∫ | dx = | ∫ | dx | |||
| sinx + cosx | 2 | cos(x−π/4) |
| sinx | tgx | |||
∫ | dx=∫ | dx | ||
| sinx+cosx | tgx+1 |
| tgx | ||
=∫ | dx | |
| (tgx+1)(cos2x+sin2x) |
| tgx | dx | ||
=∫ | |||
| (tgx+1)(1+tg2x) | cos2x |
| t | ||
∫ | dt | |
| (t+1)(1+t2) |
| 1 | (t+1)2−(1+t2) | ||
∫ | dt | ||
| 2 | (t+1)(1+t2) |
| 1 | t+1 | 1 | dt | |||||
= | ∫ | − | ∫ | |||||
| 2 | 1+t2 | 2 | 1+t |
| 1 | 1 | 1 | ||||
= | ln|1+t2|− | ln|1+t|+ | arctan(t)+C | |||
| 4 | 2 | 2 |
| 1 | 1 | cosx+sinx | 1 | |||||
=− | ln|cosx|− | ln| | |+ | x+C | ||||
| 2 | 2 | cosx | 2 |
| 1 | 1 | |||
=− | ln|sinx+cosx|+ | x+C | ||
| 2 | 2 |