Równanie różniczkowe
Meu: Rozwiąż równanie różniczkowe bez wyznaczania współczynników:
y'' + 4y' + 5y = e−2xsinx + e−2x
Z całki ogólnej równania jednorodnego mam:
yj = e−2x(C1*cos(x) + C2sin(x))
Jak metodą przewidywań ma wyglądać teraz yp?
6 lut 21:56
xyz:
ja bym to chyba rozbil na 2 przypadki − te prawa strone
wpierw dla r1(x) = e−2xsinx
a potem dla r2(x) = e−2x
i to wszystko na koncu dodac
wiec najpierw
yp1 = Ae−2xsinx + Be−2xcosx
oczywiscie fragment Ae−2xsinx jakby "pokrywa sie" z e−2xC2sinx
w sumie ten drugi tez sie pokrywa (wystarczy ze fragment sie pokryje i...
podnosimy stopien yp1) zatem nowe yp1:
yp1 = x(Ae−2xsinx + Be−2xcosx) = Axe−2xsinx + Bxe−2xcosx
dalej to juz wiesz
pochodna, druga pochodna , podstawienie itd.
jak wyznaczysz wszystko to potem dla e−2x
yp = Ae−2x
yp' = ...
yp" = ...
no i wtedy
y = yj + yp1 + yp2
6 lut 23:58
7 lut 09:13
Mariusz:
y'' + 4y' + 5y = e
−2xsinx + e
−2x
y(0)=C
2
y'(0)=C
1
∫
0∞y
(n)(x)e
−sxdx=y
(n−1)(x)e
−sx|
0∞+s∫
0∞y
(n−1)e
−sxdx
∫
0∞y
(n)(x)e
−sxdx=0−y
(n−1)(0
+)+s∫
0∞y
(n−1)e
−sxdx
∫
0∞y
(n)(x)e
−sxdx=−y
(n−1)(0
+)+s∫
0∞y
(n−1)e
−sxdx
L(y''(x))=−y'(0
+)+s(−y(0
+)+sL(y(x)))
L(y''(x))=−y'(0
+)−sy(0
+)+s
2L(y(x))
L(y'(x))=−y(0
+)+sL(y(x))
y'' + 4y' + 5y=e
−2xsinx + e
−2x
| 1 | | 1 | |
(−C1−sC2+s2Y(s))+4(−C2+sY(s))+5Y(s)= |
| + |
| |
| (s+2)2+1 | | s+2 | |
| 1 | | 1 | |
(s2+4s+5)Y(s)=C1+4C2+sC2+ |
| + |
| |
| (s+2)2+1 | | s+2 | |
| C1+4C2 | | s | | s2+5s+7 | |
Y(s)= |
| +C2 |
| + |
| |
| s2+4s+5 | | s2+4s+5 | | (s+2)(s2+4s+5)2 | |
s2+5s+7 | | 1 | | s+2 | | 1 | |
| = |
| − |
| + |
| |
(s+2)(s2+4s+5)2 | | s+2 | | s2+4s+5 | | (s2+4s+5)2 | |
| s+2 | |
L(e−2xcos(x))= |
| |
| (s2+4s+5 | |
d | | s+2 | | 1*(s2+4s+5)−(2s+4)(s+2) | |
| ( |
| )= |
| |
ds | | s2+4s+5 | | (s2+4s+5)2 | |
d | | s+2 | | (s2+4s+5)−(2s2+8s+8) | |
| ( |
| )= |
| |
ds | | s2+4s+5 | | (s2+4s+5)2 | |
d | | s+2 | | −(s2+4s+3) | |
| ( |
| )= |
| |
ds | | s2+4s+5 | | (s2+4s+5)2 | |
d | | s+2 | | 2−(s2+4s+5) | |
| ( |
| )= |
| |
ds | | s2+4s+5 | | (s2+4s+5)2 | |
d | | s+2 | | 2 | | 1 | |
| ( |
| )= |
| − |
| |
ds | | s2+4s+5 | | (s2+4s+5)2 | | s2+4s+5 | |
2 | | d | | s+2 | | 1 | |
| = |
| ( |
| + |
| |
(s2+4s+5)2 | | ds | | s2+4s+5 | | s2+4s+5 | |
| C1+4C2 | | s | | s2+5s+7 | |
Y(s)= |
| +C2 |
| + |
| |
| s2+4s+5 | | s2+4s+5 | | (s+2)(s2+4s+5)2 | |
y(x)=(C
1+2C
2)e
−2xsin(x)+C
2e
−2xcos(x)+
| 1 | | 1 | |
e−2x−e2xcos(x)− |
| xe−2xcos(x)+ |
| e−xsin(x) |
| 2 | | 2 | |
7 lut 13:10