| 3 | ||
a0= | ||
| 4 |
| 3 | 3 | |||
∑n=0∞anxn− | −2x=4x(∑n=0∞anxn− | )−4x2(∑n=0∞anxn) | ||
| 4 | 4 |
| 3 | ||
A(x)− | −2x=4xA(x)−3x−4x2A(x) | |
| 4 |
| 3 | ||
A(x)(1−4x+4x2)=−x+ | ||
| 4 |
| 1 | 2−4x+1 | ||
A(x)= | |||
| 4 | (1−2x)2 |
| 1 | 1 | 1 | 1 | |||
A(x)= | + | |||||
| 2 | 1−2x | 4 | (1−2x)2 |
| 1 | ||
∑n=0∞2nxn= | ||
| 1−2x |
| d | d | 1 | |||
(∑n=0∞2nxn)= | ( | ) | |||
| dx | dx | 1−2x |
| −1 | ||
∑n=0∞n2nxn−1= | (−2) | |
| (1−2x)2 |
| 2 | ||
∑n=1∞n2nxn−1= | ||
| (1−2x)2 |
| 2 | ||
∑n=0∞(n+1)2n+1xn= | ||
| (1−2x)2 |
| 1 | ||
∑n=0∞(n+1)2nxn= | ||
| (1−2x)2 |
| 1 | 1 | |||
A(x)= | ∑n=0∞2nxn+ | ∑n=0∞(n+1)2nxn | ||
| 2 | 4 |
| 1 | 1 | |||
an= | *2n+ | (n+1)2n | ||
| 2 | 4 |
| 1 | ||
an= | (n+3)2n | |
| 4 |