√(x4+1) | ||
∫ | dx | |
x3 |
1 | 1 | 1 | 1 | |||||
∫√x4+1* | dx=√x4+1*(− | )−∫− | * | *4x3dx | ||||
x3 | 2x2 | 2x2 | 2√x4+1 |
1 | 1 | |||
√x4+1*(− | )−∫− | *x dx | ||
2x2 | √x4+1 |
1 | dt | |||
√x4+1*(− | )+∫ | |||
2x2 | 2√t2+1 |
1 | 1 | |||
√x4+1*(− | )+ | *ln(|t+√t2+1|) | ||
2x2 | 2 |
1 | 1 | |||
√x4+1*(− | )+ | *ln(|x2+√x4+1|)+C | ||
2x2 | 2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |