5−3 | 1 | |||
r1 = | = | |||
4 | 2 |
2p' | |
= 1 / ∫ | |
5p−2 |
2 dp | dp | |||
∫ | = ∫ 1 dx (zauwaz dx, a nie dp, oraz p' = | , wiec calka usunie dx) | ||
5p−2 | dx |
dp | ||
2 ∫ | = x + C1 | |
5p−2 |
dp | ||
te calke ∫ | mozna podstawieniem | |
5p−2 |
dp |
| 1 | 1 | 1 | 1 | |||||||||||||
a wiec ∫ | = ∫ | = | ∫ | dt = | ln |t|= | ln |5p−2| | ||||||||||||
5p−2 | t | 5 | t | 5 | 5 |
dp | ||
2 ∫ | = x + C1 | |
5p−2 |
1 | ||
2 * | ln |5p−2| + C2 = x + C1 | |
5 |
2 | |
ln |5p−2| = x + C3 / * 5/2 | |
5 |
5 | ||
ln |5p−2| = | x + C4 | |
2 |
e5/2x + C5 + 2 | e5/2x + C6 | |||
p = | = | |||
5 | 5 |
dy | ||
skoro p = y' = | to ∫ p dx = y (a my wlasnie igrek chcemy znalezc) | |
dx |
e5/2x + C6 | 1 | |||
∫ | dx = | ∫ (e5/2 x + C6) dx = ... | ||
5 | 5 |
2 | ||
e5/2 x to bedzie | e5/2x + C7 (bo odwrotnosc 5/2 to 2/5) | |
5 |
1 | 2 | |||
... = | ( | e5/2x+C7 + C6x + C8) = | ||
5 | 5 |
1 | 2 | |||
= | ( | e5/2x + C6x + C9) = | ||
5 | 5 |
2 | ||
= | e5/2x + C10x + C11 | |
25 |