−1 | ||
sin2x + sin2x = | ||
2 |
−1 | ||
sin2x+2sinxcosx= | ||
2 |
1 | 1 | |||
sin2x+ | (1−cos2x)=− | |||
2 | 2 |
1 | 1 | 1 | ||||
sin2x+ | − | cos2x=− | ||||
2 | 2 | 2 |
1 | ||
sin2x− | cos2x=−1 | |
2 |
1 | 2 | |||
( | cos2x−sin2x=1) | |||
2 | √5 |
1 | 2 | 2 | |||
cos2x− | sin2x= | ||||
√5 | √5 | √5 |
2 | ||
cos(2x+φ)= | ||
√5 |
2 | ||
2x+φ=arccos( | )+2kπ | |
√5 |
2 | ||
−(2x+φ)=arccos( | )+2kπ | |
√5 |
2 | ||
2x=arccos( | )−arctan(2)+2kπ | |
√5 |
2 | ||
2x=−arccos( | )+arctan(2)−2kπ | |
√5 |
1 | 2 | 1 | ||||
x= | arccos( | )− | arctan(2)+kπ | |||
2 | √5 | 2 |
1 | 2 | 1 | ||||
x=− | arccos( | )+ | arctan(2)−kπ | |||
2 | √5 | 2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |