metoda operatorowa, Tw laplacea
kers02: Witam potrzebuję pomocy z zadaniem. Rozwiązać zagadnienie początkowe metodą operatorową:
y''''−7y'''+11y''+7y'−12y=0
y'(0)=1
y''(0)=−1
y'''(0)=1
Wiem że trzeba użyć tw laplace, ale nie weim za bardzo jak
Mariusz:
Aby upewnić się gdzie powinny być "primy" i "bisy" scałkuj przekształcenie Laplace przez części
∫y
(n)(t)e
−stdt=y
(n−1)(t)e
−st|
0∞−∫
0∞y
(n−1)(−se
−st)dt
∫y
(n)(t)e
−stdt=0−y
(n−1)(0
+)+s∫
0∞y
(n−1)e
−stdt
L(y
(n)(t))=−y
(n−1)(0
+)+sL(y
(n−1)(t))
L(y
4(t))=−y'''(0
+)+sL(y'''(t))
L(y
4(t))=−y'''(0
+)+s(−y''(0
+)+sL(y''(t)))
L(y
4(t))=−y'''(0
+)−sy''(0
+)+s
2L(y''(t))
L(y
4(t))=−y'''(0
+)−sy''(0
+)+s
2(−y'(0
+)+sL(y'(t)))
L(y
4(t))=−y'''(0
+)−sy''(0
+)−s
2y'(0
+)+s
3L(y'(t))
L(y
4(t))=−y'''(0
+)−sy''(0
+)−s
2y'(0
+)+s
3(−y(0
+)+sL(y(t)))
L(y
4(t))=−y'''(0
+)−sy''(0
+)−s
2y'(0
+)−s
3y(0
+)+s
4L(y(t))
(−1+s−s
2−Cs
3)+s
4Y(s)−7(1−s−Cs
2)−7s
3Y(s)+11(−1−Cs)+11s
2Y(s)−7C+7sY(s)−12Y(s)=0
(s
4−7s
3+11s
2+7s−12)Y(s)−7C−19+(−11C+8)s+(7C−1)s
2−Cs
3=0
(s
4−7s
3+11s
2+7s−12)Y(s)=Cs
3+(−7C+1)s
2+(11C−8)s+7C+19
| Cs3+(−7C+1)s2+(11C−8)s+7C+19 | |
Y(s)= |
| |
| s4−7s3+11s2+7s−12 | |
s
4−7s
3+11s
2+7s−12=0
(s
4−7s
3)−(−11s
2−7s+12)=0
| 49 | | 5 | |
(s4−7s3+ |
| s2)−( |
| s2−7s+12)=0 |
| 4 | | 4 | |
| 7 | | 5 | |
(s2− |
| s)2−( |
| s2−7s+12)=0 |
| 2 | | 4 | |
| 7 | | y | | 5 | | 7 | | y2 | |
(s2− |
| s+ |
| )2−((y+ |
| )s2+(− |
| y−7)s+ |
| +12)=0 |
| 2 | | 2 | | 4 | | 2 | | 4 | |
| 5 | | 7 | |
(y2+48)(y+ |
| )−(− |
| y−7)2=0 |
| 4 | | 2 | |
| 5 | | 49 | |
(y3+ |
| y2+48y+60)−( |
| y2+49y+49)=0 |
| 4 | | 4 | |
y
3−11y
2−y+11=0
y
2(y−11)−1(y−11)=0
(y−11)(y
2−1)=0
| 7 | | 1 | | 9 | | 21 | | 49 | |
(s2− |
| s+ |
| )2−( |
| s2− |
| s+ |
| ) |
| 2 | | 2 | | 4 | | 2 | | 4 | |
| 7 | | 1 | | 3 | | 7 | |
(s2− |
| s+ |
| )2−( |
| s− |
| )2=0 |
| 2 | | 2 | | 2 | | 2 | |
| 7 | | 1 | | 3 | | 7 | | 7 | | 1 | | 3 | | 7 | |
((s2− |
| s+ |
| )−(( |
| s− |
| )))((s2− |
| s+ |
| )+(( |
| s− |
| )))=0 |
| 2 | | 2 | | 2 | | 2 | | 2 | | 2 | | 2 | | 2 | |
(s
2−5s+4)(s
2−2s−3)=0
(s−1)(s−4)(s+1)(s−3)=0
| Cs3+(−7C+1)s2+(11C−8)s+7C+19 | |
Y(s)= |
| |
| s4−7s3+11s2+7s−12 | |
| Cs3+(−7C+1)s2+(11C−8)s+7C+19 | |
Y(s)= |
| |
| (s−1)(s−4)(s+1)(s−3) | |
| A | | B | | C | | D | |
Y(s)= |
| + |
| + |
| + |
| |
| s−1 | | s−4 | | s+1 | | s−3 | |
1 −7 11 7 −12
1 1 −6 5 12 0
A(s
3−6s
2+5s+12)
1 −7 11 7 −12
4 1 −3 −1 3 0
B(s
3−3s
2−s+3)
1 −7 11 7 −12
−1 1 −8 19 −12 0
C(s
3−8s
2+19s−12)
1 −7 11 7 −12
3 1 −4 −1 4 0
D(s
3−4s
2−s+4)
A(s
3−6s
2+5s+12)+B(s
3−3s
2−s+3)+C(s
3−8s
2+19s−12)+D(s
3−4s
2−s+4)=
Ks
3+(K+1)s
2+(11K−8)s+7K+19
A+B+C+D=K
−6A−3B−8C−4D=−7K+1
5A−B+19C−D=11K−8
12A+3B−12C+4D=7K+19
1 1 1 1 1 0 0 0
−6 −3 −8 −4 0 1 0 0
5 −1 19 −1 0 0 1 0
12 3 −12 4 0 0 0 1
3 3 3 3 3 0 0 0
0 3 −2 2 6 1 0 0
0 −6 14 −6 −5 0 1 0
0 −9 −24 −8 −12 0 0 1
6 0 10 2 −6 −2 0 0
0 15 −10 10 30 5 0 0
0 0 10 −2 7 2 1 0
0 0 −30 −2 6 3 0 1
12 0 0 8 −26 −8 −2 0
0 15 0 8 37 7 1 0
0 0 40 −8 28 8 4 0
0 0 0 −8 27 9 3 1
12 0 0 0 1 1 1 1
0 15 0 0 64 16 4 1
0 0 40 0 1 −1 1 −1
0 0 0 −8 27 9 3 1
120 0 0 0 10 10 10 10
0 120 0 0 512 128 32 8
0 0 120 0 3 −3 3 −3
0 0 0 120 −405 −135 −45 −15
A
−1=
10 | | 10 | | 10 | | 10 | |
| |
| |
| |
| |
120 | | 120 | | 120 | | 120 | |
512 | | 128 | | 32 | | 8 | |
| |
| |
| |
| |
120 | | 120 | | 120 | | 120 | |
3 | | −3 | | 3 | | −3 | |
| |
| |
| |
| |
120 | | 120 | | 120 | | 120 | |
−405 | | −135 | | −45 | | −15 | |
| |
| |
| |
| |
120 | | 120 | | 120 | | 120 | |
A+B+C+D=K
−6A−3B−8C−4D=−7K+1
5A−B+19C−D=11K−8
12A+3B−12C+4D=7K+19
| 1 | | 1 | | 1 | | 1 | |
A= |
| K+ |
| (−7K+1)+ |
| (11K−8)+ |
| (7K+19) |
| 12 | | 12 | | 12 | | 12 | |
A=K+1
| 64 | | 16 | | 4 | | 1 | |
B= |
| K+ |
| (−7K+1)+ |
| (11K−8)+ |
| (7K+19) |
| 15 | | 15 | | 15 | | 15 | |
| 1 | | 1 | | 1 | | 1 | |
C= |
| K− |
| (−7K+1)+ |
| (11K−8)− |
| (7K+19) |
| 40 | | 40 | | 40 | | 40 | |
| −27 | | 9 | | 3 | | 1 | |
D= |
| K− |
| (−7K+1)− |
| (11K−8)− |
| (7K+19) |
| 8 | | 8 | | 8 | | 8 | |
| 1 | | 131 | | 1 | | 1 | |
Y(s)=(K+1) |
| +( |
| K+ |
| ) |
| |
| s−1 | | 15 | | 5 | | s−4 | |
| 1 | | 7 | | 1 | | 19 | | 1 | | 1 | |
+( |
| K− |
| ) |
| +(− |
| K− |
| ) |
| |
| 10 | | 10 | | s+1 | | 2 | | 2 | | s−3 | |
| 5 | | 1 | | 1 | |
y(t)=( |
| K+1)et+( |
| K+ |
| )e4t+ |
| 3 | | 5 | | 5 | |
| 3 | | 7 | | 1 | | 1 | |
( |
| K− |
| )e−t−( |
| K+ |
| )e3t |
| 10 | | 10 | | 2 | | 2 | |
Macierz odwrotna jest o tyle wygodna że jeśli pomylisz się przy wyznaczaniu
wektora wyrazów wolnych (jak mi się to zdarzyło) to łatwo rozwiążesz układ
z poprawnym wektorem wyrazów wolnych
Nie podałeś wartości y(0) więc przyjąłem że jest ona równa pewnej stałej