| x+3 | ||
∫ | ||
| x(x−1)2 |
| x2+3x | x2+3x | |||
∫ | dx=∫ | |||
| x2(x−1)2 | (x2−x)2 |
| 1 | 7 | ||
(2x+7)(2x−1)+ | =x2+3x | ||
| 4 | 4 |
| 1 | 1 | |||
x2−x= | (2x−1)(2x−1)− | |||
| 4 | 4 |
| 1 | 1 | ||
= | (2x−1)(2x−1)−(x2−x) | ||
| 4 | 4 |
| 7 | 1 | ||
= | (2x−1)(14x−7)−7(x2−x) | ||
| 4 | 4 |
| 1 | 1 | ||
(2x+7)(2x−1)+ | (2x−1)(14x−7)−7(x2−x)=x2+3x | ||
| 4 | 4 |
| x2+3x | 4x(2x−1) | x2−x | ||||
∫ | dx=∫ | dx−7∫ | dx | |||
| x2(x−1)2 | (x2−x)2 | (x2+3x)2 |
| x2+3x | 4x | 4 | 7 | |||||
∫ | dx=− | +∫ | dx−∫ | dx | ||||
| x2(x−1)2 | x2−x | x2−x | x2−x |
| x2+3x | 4 | 1 | ||||
∫ | dx=− | −3∫ | dx | |||
| x2(x−1)2 | x−1 | x(x−1) |
| x2+3x | 4 | (x−1)−x | ||||
∫ | dx=− | +3∫ | dx | |||
| x2(x−1)2 | x−1 | x(x−1) |
| x2+3x | 4 | dx | dx | |||||
∫ | dx=− | +3(∫ | −∫ | ) | ||||
| x2(x−1)2 | x−1 | x | x−1 |
| x2+3x | 4 | x | ||||
∫ | dx=− | +3ln| | |+C | |||
| x2(x−1)2 | x−1 | x−1 |