| 12x2 + 2x | ||
f(x) = | ||
| (1 − 3x)3 |
| ||||||||
(1+x+x2+x3+..)k=∑n | xn | |||||||
| 12x2+2x | A | B | C | ||||
= | + | + | |||||
| (1−3x)3 | 1−3x | (1−3x)2 | (1−3x)3 |
| 4 | ||
A= | ||
| 3 |
| 10 | ||
B=− | ||
| 3 |
| 4 | 1 | 10 | 1 | 1 | |||
− | +2 | ||||||
| 3 | 1−3x | 3 | (1−3x)2 | (1−3x)3 |
| 1 | |
=∑n=0∞qnxn | |
| 1−qx |
| d | 1 | d | |||
( | )= | (∑n=0∞qnxn) | |||
| dx | 1−qx | dx |
| 1 | ||
− | (−q)=∑n=0∞nqnxn−1 | |
| (1−qx)2 |
| q | |
=∑n=1∞nqnxn−1 | |
| (1−qx)2 |
| q | |
=∑n=0∞(n+1)qn+1xn | |
| (1−qx)2 |
| 1 | |
=∑n=0∞(n+1)qnxn | |
| (1−qx)2 |
| d | 1 | d | |||
( | )= | (∑n=0∞(n+1)qnxn) | |||
| dx | (1−qx)2 | dx |
| 2 | ||
− | (−q)=∑n=0∞(n+1)nqnxn−1 | |
| (1−qx)3 |
| 2q | |
=∑n=1∞(n+1)nqnxn−1 | |
| (1−qx)3 |
| 2q | |
=∑n=0∞(n+2)(n+1)qn+1xn | |
| (1−qx)3 |
| 2 | |
=∑n=0∞(n+2)(n+1)qnxn | |
| (1−qx)3 |
| d | 2 | d | |||
( | )= | (∑n=0∞(n+2)(n+1)qnxn) | |||
| dx | (1−qx)3 | dx |
| 2*3 | ||
− | (−q)=∑n=0∞(n+2)(n+1)nqnxn−1 | |
| (1−qx)4 |
| 2*3*q | |
=∑n=1∞(n+2)(n+1)nqnxn−1 | |
| (1−qx)4 |
| 2*3*q | |
=∑n=0∞(n+3)(n+2)(n+1)qn+1xn | |
| (1−qx)4 |
| 2*3 | |
=∑n=0∞(n+3)(n+2)(n+1)qnxn | |
| (1−qx)4 |
| d | 2*3 | d | |||
( | )= | (∑n=0∞(n+3)(n+2)(n+1)qnxn) | |||
| dx | (1−qx)4 | dx |
| 2*3*4 | ||
− | (−q)=∑n=0∞(n+3)(n+2)(n+1)nqnxn−1 | |
| (1−qx)5 |
| 2*3*4*q | |
=∑n=1∞(n+3)(n+2)(n+1)nqnxn−1 | |
| (1−qx)5 |
| 2*3*4*q | |
=∑n=0∞(n+4)(n+3)(n+2)(n+1)qn+1xn | |
| (1−qx)5 |
| 2*3*4 | |
=∑n=0∞(n+4)(n+3)(n+2)(n+1)qnxn | |
| (1−qx)5 |
| m! | |
=∑n=0∞∏k=1m(n+k)qnxn | |
| (1−qx)m+1 |
| 12x2+2x |
| 2 |
|
| |||||||||||||||||||||||
= (12x2+2x)∑ | 3nxn= | ∑[2 | + | ]3nxn | |||||||||||||||||||||||
| (1−3x)3 | 3 |
| 4 | 1 | 10 | 1 | 1 | ||||
= | − | +2 | ||||||
| 3 | 1−3x | 3 | (1−3x)2 | (1−3x)3 |
| 4 | 10 | |||
= | (∑n=0∞3nxn)− | (∑n=0∞(n+1)3nxn)+ | ||
| 3 | 3 |
| 1 | ||
=∑n=0∞( | (4−10(n+1)+3(n+2)(n+1))3n)xn | |
| 3 |