1 | ||
∑n=0∞2nxn= | ||
1−2x |
d | d | 1 | |||
(∑n=0∞2nxn)= | ( | ) | |||
dx | dx | 1−2x |
1 | ||
∑n=0∞n2nxn−1=− | (−2) | |
(1−2x)2 |
2 | ||
∑n=0∞n2nxn−1= | ||
(1−2x)2 |
2x | ||
∑n=0∞n2nxn= | ||
(1−2x)2 |
1−(1−2x) | ||
∑n=0∞n2nxn= | ||
(1−2x)2 |
1 | 1 | |||
∑n=0∞n2nxn= | − | |||
(1−2x)2 | 1−2x |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |