n3+2n2−3n−6 | ||
Wyznacz wszystkie liczby całkowite n, dla których liczba | jest liczbą | |
n2+3n+2 |
n3+2n2−3n−6 | n3+2n2−3n−6 | n(n−1)(n+3)−6 | |||
= | = | =? | |||
n2+3n+2 | (n+2)(n+1) | (n+2)(n+1) |
2 | ||
Ułamek = n−1 − | ||
n+1 |
(n+2)*(n2−3) | ||
f(n)= | , n≠−2 i n≠−1 | |
(n+2)*(n+1) |
n2−3 | n2−1−2 | (n−1)*(n+1)−2 | ||||
f(n)= | = | = | ||||
n+1 | n+1 | n+1 |
(n−1)*(n+1) | −2 | |||
f(n)= | + | |||
n+1 | n+1 |
−2 | ||
f(n)=n−1+ | ||
n+1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |