2sin(x+Δx)−sin(x)+sin(x)−2sin(x) | ||
limΔx→0 | ||
Δx |
(2sin(x+Δx)−sin(x))2sin(x)−2sin(x) | ||
limΔx→0 | ||
Δx |
2sin(x)(2sin(x+Δx)−sin(x)−1) | ||
limΔx→0 | ||
Δx |
2sin(x+Δx)−sin(x)−1 | ||
2sin(x)limΔx→0 | ||
Δx |
2sin(x+Δx)−sin(x)−1 | sin(x+Δx)−sin(x) | ||
2sin(x)limΔx→0 | |||
sin(x+Δx)−sin(x) | Δx |
2sin(x+Δx)−sin(x)−1 | ||
2sin(x)limΔx→0 | limΔx→0U{s | |
sin(x+Δx)−sin(x) |
2sin(x+Δx)−sin(x)−1 | ||
Granicę limΔx→0 | ||
sin(x+Δx)−sin(x) |
2t−1 | ||
limΔx→0 | ||
t |
sin(x+Δx)−sin(x) | ||
Granicę limΔx→0 | ||
Δx |