Wyznacz wszystkie wartości parametru m, dla których
Andre: Cześć. Mam takie zadanie:
Wyznacz wszystkie wartości parametru m, dla których równanie mctg2x= 3ctg2x + m+ 1 ma
rozwiązanie.
3 sty 11:23
ite: założenia dla istnienia funkcji cotangens,
potem m*ctg2x= 3ctg2x + m+ 1
m*ctg2x−3ctg2x = m+ 1
(m−3)ctg2x = m+ 1 i w takiej postaci analiza istnienia rozwiązań
3 sty 12:13
Andre: Założenie funkcji ctg to po prostu ∊ R \ { kπ i k∊C }
Ale jak to teraz sprawdzić mając to (m−3)ctg2x = m+ 1 ?
3 sty 15:22
Mila:
1)m≠3
Rozwiąż
2) sprawdzamy co się dzieje gdy m=3
3ctg
2x=3ctg
x+3+1
0=4 sprzeczność ⇔brak rozwiązań dla m=3
3 sty 15:32