x2 dx | ||
integral | ||
√x2−x+1 |
1 | ||
Zauważ, że x2 − x + 1 = x2 − 2* | x + (1/2)2 + 3/4 = (x− 1/2)2 + 3/4 = | |
2 |
3 | (2x−1) | |||
= | [ ( | )2 + 1] | ||
4 | √3 |
x2 | ||
∫ | dx | |
√x2−x+1 |
t2−1 | ||
x= | ||
2t−1 |
2t2−t−t2+1 | ||
t−x= | ||
2t−1 |
t2−t+1 | ||
t−x= | ||
2t−1 |
2t(2t−1)−2(t2−1) | ||
dx= | dt | |
(2t−1)2 |
4t2−2t−2t2+2 | ||
dx= | dt | |
(2t−1)2 |
2t2−2t+2 | ||
dx= | dt | |
(2t−1)2 |
t2−t+1 | ||
dx=2 | dt | |
(2t−1)2 |
(t2−1)2 | 2t−1 | t2−t+1 | |||
∫ | (2 | dt) | |||
(2t−1)2 | t2−t+1 | (2t−1)2 |
(t2−1)2 | ||
2∫ | dt | |
(2t−1)3 |
1 | 16(t4−2t2+1) | ||
∫ | dt | ||
8 | (2t−1)3 |
1 | 16t4−32t2+16 | ||
∫ | dt | ||
8 | (2t−1)3 |
1 | ((2t−1)+1)4−8((2t−1)+1)2+16 | ||
∫ | dt | ||
8 | (2t−1)3 |
1 | (2t−1)4+4(2t−1)3+6(2t−1)2+4(2t−1)+1−8(2t−1)2−16(2t−1)−8+16 | ||
∫ | dt | ||
8 | (2t−1)3 |
1 | (2t−1)4+4(2t−1)3−2(2t−1)2−12(2t−1)+9 | ||
∫ | dt | ||
8 | (2t−1)3 |