⎧ | 2x+y=m | |
⎩ | x+2y=1 |
y | ||
jest para liczb (x, y) spełniająca warunek | =3? | |
x2 |
x + 1−m | |
= 3 −> 3x2 − x + (m−1) = 0 | |
x2 |
⎧ | 2x + y=m | |
⎩ | x + 2y = 1 | ⇔ |
⎧ | 2x + y=m | |
⎩ | 2x + 4y = 2 | ⇔ |
2−m | ||
3y = 2−m ⇔ y = | ||
3 |
2−m | ||
y = 3x2 ⇔ | = x2 ⇔ m < ... | |
9 |
m + 1 | ||
(x+y) = | ||
3 |
2m − 1 | ||
x = | ||
3 |
2 − m | ||
y = | ||
3 |