| ⎧ | 2x+y=m | |
| ⎩ | x+2y=1 |
| y | ||
jest para liczb (x, y) spełniająca warunek | =3? | |
| x2 |
| x + 1−m | |
= 3 −> 3x2 − x + (m−1) = 0 | |
| x2 |
| ⎧ | 2x + y=m | |
| ⎩ | x + 2y = 1 | ⇔ |
| ⎧ | 2x + y=m | |
| ⎩ | 2x + 4y = 2 | ⇔ |
| 2−m | ||
3y = 2−m ⇔ y = | ||
| 3 |
| 2−m | ||
y = 3x2 ⇔ | = x2 ⇔ m < ... ![]() | |
| 9 |
| m + 1 | ||
(x+y) = | ||
| 3 |
| 2m − 1 | ||
x = | ||
| 3 |
| 2 − m | ||
y = | ||
| 3 |