matematykaszkolna.pl
logarytm mam pytanie: mam pytanie: jak policzyć log50 bez użycia kalkulatora naukowego (tylko 'na kartce' lub kalkulatorem prostym). Z góry dziękuję za odpowiedź.
25 gru 13:13
mam pytanie: zdaje się, że to odczytuje się z tablic?
25 gru 13:31
dudek: = log10 + log5 = 1 + (z tablic)
25 gru 13:34
25 gru 13:40
daras: wzorem Taylora
25 gru 13:42
jc: ... a listy wysyłamy w kopertach ze znaczkiem. Nie pamiętam, kiedy widziałem tablice matematyczne. Przecież każdy komputer jest świetnym kalkulatorem. A jak nie mamy dostępu do komputera, to możemy liczyć tak, jak mówi Daras: log 15 = log(1+7/8) − log(1−7/8) dudek, skąd przypuszczenie, że podstawa = 10? (oczywiście to żaden problem)
25 gru 13:50
dudek: jc, z wykopalisk.Przyjęto w polskiej matematyce, że log a ,to log10a
25 gru 13:53
Mariusz: Na obliczenie log2(x) gdzie x∊[1,2) jest stosunkowo łatwy iteracyjny algorytm Każda iteracja ustawia jeden bit rozwinięcia dwójkowego Na zmianę podstawy logarytmu jest wzór
 50 
log2(50)=log2(32

)
 32 
 25 
log2(50)=log2(32)+log2(

)
 16 
 25 
log2(50)=5+log2(

)
 16 
25 gru 14:19
daras: dla chcącego nic trudnego emotka http://www.tomek.strony.ug.edu.pl/logarytmy.htm
25 gru 14:44
daras: btw ja sie jeszcze uczyłem w szkole średniej o cechach i mantysach chociaż suwaka już nie używaliśmy tylko tablice Henry Briggsa z XVIIw.
25 gru 14:49
daras: log50 =log10 + log5 = 1 + log5
 ln5 
log5 =

 ln10 
 
1 1 1 

+

+ ...+

n n+1 5n 
 

 
1 1 1 

+

+ ...+

n n+1 10n 
 
im większe n wstawisz, tym większa dokładność już dla n =2 błąd wynosi ok. 6%
25 gru 15:07
daras: sry tylko niecałe 3% ( ≈2,57%) kalkulator mnie oszukał emotka
25 gru 15:16
jc: Dwa wyrazy z szeregu M dają jeszcze lepszy wynik. ln(1+x)−ln(1−x)=2(x+x3/3+...)
1+1/9 

=45/31, błąd około 1.5%
2/3+8/81 
25 gru 15:31
mam pytanie: udało mi się znaleźć w linku od Darasa, że
 10 
log50=log(10*5)=1+log5=1+log(

)=1+1−log2 log2=0,301 log50≈1,7
 2 
o coś takiego mi chodziło oraz właśnie o to, o czym napisał Dudek, że część się liczy na piechotę resztę z tablic − poziom liceum. Dziękuję Wszystkim za pomoc! emotka
25 gru 17:36
jc: Kto obecnie korzysta z tablic?
25 gru 17:52
25 gru 17:55
jc: Myślałem raczej o tablicach funkcji matematycznych. W czasach, kiedy każdy ma pod ręką komputer, rzecz wydaje się mało praktyczna. Rozumiem, że chodzi w tym raczej o zachowanie jakiejś tradycji. Dobrze chociaż, że z kalkulatorów można korzystać. Może bardziej praktyczna, od korzystania z tablic, byłaby umiejętność krzesania ognia?
25 gru 18:02
ite: Uczniowie chętnie by ćwiczyli, straż pożarna miałaby pieniądze za dodatkowe wyjazdy : )))
25 gru 18:34
Mariusz: Może bardziej praktyczna, od korzystania z tablic, byłaby umiejętność krzesania ognia? Oczywiście bez korzystania z zapalniczek lub zapałek
25 gru 23:00