| 2r+2l | ||
Pole ΔABC: P=Rp, p= | ⇒p=r+l | |
| 2 |
| rH | r2H2 | |||
to R= | R2= | |||
| r+l | (r+l)2 |
| Vk | 4r3H3 | 4rH2 | |||
=.......= | = | ||||
| Vst | r2H(r+l)3 | (r+l)3 |
| Pk | 4R2 | 4rH2 | |||
= | = ....= | ||||
| Pst | r(r+l) | (r+l)3 |
Zrobiłeś rysunek
Rysunek przekroju? zaznaczyłeś cokolwiek na nim?
Wypisałeś wzory na pola całkowite i objętości
1) x = H − r
2) z podobieństwa trójkątów:
| r | R | Rx | |||
= | −> r = | ||||
| x | l | l |
| Vk | r3 | R3x3 | Rx3 | |||||
3) | = 4 | = 4 | = 4 | |||||
| Vst | R2H | l3R2H | l3H |
| Pck | r2 | R2x2 | Rx2 | |||||
4) | = 4 | = 4 | = 4 | |||||
| Pcst | R(R+l) | l2R(R+l) | l2(R+l) |
| r | R | ||
= | ⇔ xR = l*r ⇔ xR + x*l = l*x + l*r ⇔ xR + x*l = l*H ⇔ | ||
| x | l |
| x | 1 | Rx3 | Rx2 | |||||
⇔ | = | ⇔ 4 | = 4 | |||||
| l*H | R+l | l3H | l2(R+l) |