| dy | ||
y=−(x−2x2y3) | ||
| dx |
| dy | y | ||
= | |||
| dx | 2x2y3−x |
| dy | y | ||
= | |||
| dx | x(2xy3−1) |
| dy | y | 1 | ||
= | ||||
| dx | x | 2xy3−1 |
| du | dy | ||
=y3+3xy2 | |||
| dx | dx |
| dy | du | |||
3xy2 | = | −y3 | ||
| dx | dx |
| dy | du | u | ||||
3xy2 | = | − | ||||
| dx | dx | x |
| dy | y | 1 | ||
= | ||||
| dx | x | 2xy3−1 |
| dy | 3xy3 | 1 | |||
3xy2 | = | ||||
| dx | x | 2xy3−1 |
| du | u | 3u | 1 | |||
− | = | |||||
| dx | x | x | 2u−1 |
| du | u | 3u | 1 | |||
= | + | |||||
| dx | x | x | 2u−1 |
| du | u | 3 | |||
= | (1+ | ) | |||
| dx | x | 2u−1 |
| du | u | 2u+2 | ||
= | ||||
| dx | x | 2u−1 |
| du | 2 | (u+1)u | ||
= | ||||
| dx | x | 2u−1 |
| 2u−1 | du | 2 | ||
= | ||||
| u(u+1) | dx | x |
| 2u−1 | 2 | ||
du = | dx | ||
| u(u+1) | x |
| 3u−(u+1) | 2 | ||
du= | dx | ||
| u(u+1) | x |
| 3 | 1 | 2 | ||||
( | − | )du= | dx | |||
| u+1 | u | x |
| (u+1)3 | ||
ln| | |=ln|C2x2| | |
| u |
| (u+1)3 | |
=C2x2 | |
| u |
| (u+1)3 | |
=C2 | |
| ux2 |
| (xy3+1)3 | |
=C2 | |
| xy3x2 |
| (xy3+1)3 | |
=C2 | |
| x3y3 |
| xy3+1 | ||
( | )3=C | |
| xy |
| v | ||
y3= | ||
| u |
| v1/3 | ||
y= | ||
| u1/3 |
| v1/3 | v | d | |||
*1+(u−2u2 | ) | (v1/3u−1/3) | |||
| u1/3 | u | du |
| v | d | |||
v1/3}{u1/3*0+(u−2u2 | ) | (v1/3u−1/3) | ||
| u | dv |
| v1/3 | 1 | ||
+(u−2uv)(− | v1/3u−1/3u−1) | ||
| u1/3 | 3 |
| 1 | ||
(u−2uv)( | v1/3u−1/3v−1) | |
| 3 |
| v1/3 | u−2uv | v1/3 | u−2uv | ||||
(1− | )du+ | ( | )dv=0 | ||||
| u1/3 | 3u | u1/3 | v |
| v1/3 | 3u−u+2uv | v1/3 | u−2uv | ||
du+ | dv=0 | ||||
| u1/3 | 3u | u1/3 | v |
| v1/3 | 2+2v | v1/3 | 1−2v | ||
du+u | dv=0 | ||||
| u1/3 | 3 | u1/3 | v |
| v1/3 | 2+2v | 1−2v | ||
du+v1/3u2/3 | dv=0 | |||
| u1/3 | 3 | v |
| 1 | 1 | ||
μ(u,v)= | |||
| v1/3(1+v) | u2/3 |
| 1 | ||
μ(u,v)= | ||
| v1/3u2/3(1+v) |
| 1 | ||
μ(u,v)= | ||
| x1/3y x2/3(1+xy3) |
| 1 | ||
μ(u,v)= | ||
| xy(1+xy3) |
| δμ(x,y)P(x,y) | δμ(x,y)Q(x,y) | ||
= | |||
| δy | δx |
| δφ(x)ψ(y)P(x,y) | δφ(x)ψ(y)Q(x,y) | ||
= | |||
| δy | δx |
| dψ | δP(x,y) | dφ | δQ(x,y) | |||||
φ(x) | P(x,y)+φ(x)ψ(y) | =ψ(y) | Q(x,y)+ψ(y)φ(x) | |||||
| dy | δy | dx | δx |
| δP(x,y) | δQ(x,y) | dφ | dψ | |||||
φ(x)ψ(y) | − ψ(y)φ(x) | = ψ(y) | Q(x,y) − φ(x) | P(x,y) | ||||
| δy | δx | dx | dy |
| δP(x,y) | δQ(x,y) | dφ | dψ | |||||
φ(x)ψ(y)( | − | ) = ψ(y) | Q(x,y) − φ(x) | P(x,y) | ||||
| δy | δx | dx | dy |
| δP(x,y) | δQ(x,y) | ψ(y) | dφ | ||||
( | − | ) = | Q(x,y) − | ||||
| δy | δx | φ(x)ψ(y) | dx |
| φ(x) | dψ | ||
P(x,y) | |||
| φ(x)ψ(y) | dy |
| δP(x,y) | δQ(x,y) | 1 | dφ | 1 | dψ | ||||
− | = | Q(x,y) − | P(x,y) | ||||||
| δy | δx | φ(x) | dx | ψ(y) | dy |
| 1 | dφ | |
=f(x) | ||
| φ(x) | dx |
| 1 | dψ | |
=g(y) | ||
| ψ(y) | dy |
| dφ | |
=f(x)dx | |
| φ(x) |
| dψ | |
=g(y)dy | |
| ψ(y) |
| δP(x,y) | δQ(x,y) | ||
− | =Q(x,y)f(x) − P(x,y)g(y) | ||
| δy | δx |
| A | ||
Można przyjąć że funkcja f(x) będzie w postaci | ||
| x |
| B | ||
a funkcja g(y) będzie w postaci | ||
| y |
| A | B | |||
4xy3 = (x−2x2y3) | −y | |||
| x | y |
| 2 | ||
f(x)=− | ||
| x |
| 2 | ||
g(y)=− | ||
| y |
| dφ | |
=f(x)dx | |
| φ(x) |
| dψ | |
=g(y)dy | |
| ψ(y) |
| dφ | 2 | ||
=− | dx | ||
| φ(x) | x |
| dψ | 2 | ||
=− | dy | ||
| ψ(y) | y |
| 1 | ||
φ(x)= | ||
| x2 |
| 1 | ||
ψ(y)= | ||
| y2 |
| 1 | ||
μ2(x,y)= | ||
| x2y2 |
| 1 | ||
μ1(x,y)= | ||
| xy(1+xy3) |
| 1 | |
(x2y2)=C | |
| xy(1+xy3) |
| xy | |
=C | |
| 1+xy3 |
| dx | ||
y | + (x−2x2y3)=0 | |
| dy |
| dx | ||
y | + x − 2y3x2=0 | |
| dy |
| dx | ||
y | + x = 2y3x2 | |
| dy |
| dx | 1 | ||
+ | x = 2y2x2 | ||
| dy | y |