| iz+1 | 1 | √3 | ||||
Powie mi ktoś jak z takiego równania: | =− | + | i wychodzi takie | |||
| z−1 | 2 | 2 |
| (1+√3)(1+i) | ||
rozwiązanie : − | Proszę o szybką i zrozumiała odp ![]() | |
| 2 |
| iz+1 | √3i−1 | ||
= | |||
| z−1 | 2 |
| −1−√3 | ||
z= | ||
| 2i−√3i+1 |
| −1−√3)(2i−√3i−1 | ||
z= | ||
| (2i−√3)2−1 |
| −2i+√3i+1−2√3i2+3i2+√3i) | ||
z= | ||
| 4i2−4√3i2+3i2−1 |
| −2i+2√3i+2√3−2 | ||
z= | ||
| −4−4√3−3−1 |
| −2(i+1)+2√3(i+1) | ||
z= | ||
| −8+4√3 |
| (i+1)(2√3−2) | ||
z= | ||
| −4(2+√3) |
| (i+1)(√3−1)(2−√3) | (i+1)(2√3−3−2+√3) | |||
z= | z = | = | ||
| (−2)(2+√3)(2−√3 | −2 |
| (i+1)(3√3−5) | ||
z= | ||
| −2 |
| (i+1)(2√3−2) | (i+1)2(√3−1) | |||
z=( | = | |||
| −4(2−√3) | −4(2−√3) |
| (i+1)(√3−1)(2+√3) | ||
z= | ||
| −2(2−√3(2+√3) |
| (i+1)(2√3+3−2−√3) | (1+i)(1+√3) | |||
z= | = − | ![]() | ||
| −2 | 2 |
| iz+1 | ||
= w | ||
| z−1 |
| w+1 | ||
(1) z = − | . | |
| i − w |
| 1 | √3 | |||
w + 1 = | + | i | ||
| 2 | 2 |
| 1 | √3 | |||
i − w = | − | i + i, | ||
| 2 | 2 |
| 1+√3i | ||
z = − | ||
| 1−√3i + 2i |
| (1+√3i)(1−√3i) | ||
z = − | ||
| (1−√3i)2+2i(1−√3i) |
| 4 | 2 | |||
z = − | = − | = | ||
| −2−2√3i+2i+2√3 | −(1−i)+√3(1−i) |
| 2 | 2(√3+1)(1+i) | |||
− | = (mnożymy przez "sprzężenia") = − | wedle życzenia. | ||
| (1−i)(√3−1) | 2•2 |