iz+1 | 1 | √3 | ||||
Powie mi ktoś jak z takiego równania: | =− | + | i wychodzi takie | |||
z−1 | 2 | 2 |
(1+√3)(1+i) | ||
rozwiązanie : − | Proszę o szybką i zrozumiała odp | |
2 |
iz+1 | √3i−1 | ||
= | |||
z−1 | 2 |
−1−√3 | ||
z= | ||
2i−√3i+1 |
−1−√3)(2i−√3i−1 | ||
z= | ||
(2i−√3)2−1 |
−2i+√3i+1−2√3i2+3i2+√3i) | ||
z= | ||
4i2−4√3i2+3i2−1 |
−2i+2√3i+2√3−2 | ||
z= | ||
−4−4√3−3−1 |
−2(i+1)+2√3(i+1) | ||
z= | ||
−8+4√3 |
(i+1)(2√3−2) | ||
z= | ||
−4(2+√3) |
(i+1)(√3−1)(2−√3) | (i+1)(2√3−3−2+√3) | |||
z= | z = | = | ||
(−2)(2+√3)(2−√3 | −2 |
(i+1)(3√3−5) | ||
z= | ||
−2 |
(i+1)(2√3−2) | (i+1)2(√3−1) | |||
z=( | = | |||
−4(2−√3) | −4(2−√3) |
(i+1)(√3−1)(2+√3) | ||
z= | ||
−2(2−√3(2+√3) |
(i+1)(2√3+3−2−√3) | (1+i)(1+√3) | |||
z= | = − | |||
−2 | 2 |
iz+1 | ||
= w | ||
z−1 |
w+1 | ||
(1) z = − | . | |
i − w |
1 | √3 | |||
w + 1 = | + | i | ||
2 | 2 |
1 | √3 | |||
i − w = | − | i + i, | ||
2 | 2 |
1+√3i | ||
z = − | ||
1−√3i + 2i |
(1+√3i)(1−√3i) | ||
z = − | ||
(1−√3i)2+2i(1−√3i) |
4 | 2 | |||
z = − | = − | = | ||
−2−2√3i+2i+2√3 | −(1−i)+√3(1−i) |
2 | 2(√3+1)(1+i) | |||
− | = (mnożymy przez "sprzężenia") = − | wedle życzenia. | ||
(1−i)(√3−1) | 2•2 |