n+1 | ||
an = | ||
√n2+1 |
n+1 | n+1 | n+1 | ||||
I. Zauważ że | ≤ | = | = 1 + U{1/n} ≤ 1 + 1 = 2 | |||
√n2+1 | √n2 | n |
n+1 | n+1 | n+1 | 1 | |||||
II. Oraz: | ≥ | = | = 0.5 + | ≥ 0.5 | ||||
√n2+1 | √n2 + 3n2 | 2n | 2n |
n+1 | ||
a skąd | w I.? | |
√n2 |
n + 1 | n + 1 | |||
√n2 + 1 > √n2 ⇒ | < | |||
√n2 + 1 | √n2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |